Functional noble metal nanoparticle superlattices grown at interfaces.
نویسندگان
چکیده
Nanoparticle crystals or superlattices (SLs) are three dimensional arrangements of nanoparticles in the micrometre regime. In SLs, the particles are periodically arranged in a coherent long range order and hence they show collective properties. Various spectroscopic, scattering and imaging techniques have been used to understand the structure of self-assembled SLs. Extensive interest in particle SLs is due to the collective properties of the building blocks, which help us to understand the evolution in properties of organized structures. Controlling the assembly of such organized solids may open up new opportunities for fundamental studies as well as for engineering advanced materials with useful attributes. This review presents our efforts in creating SLs of noble metal nanoparticles and studies performed with those materials.
منابع مشابه
In situ growth of noble metal nanoparticles on graphene oxide sheets and direct construction of functionalized porous-layered structure on gravimetric microsensors for chemical detection.
Noble metal nanoparticles are directly and homogeneously grown onto graphene-oxide (GO) sheets in oleylamine. After the oleylamine is removed, the GO sheets are exfoliated by the nanoparticle pillars to further form hierarchical GO nanostructures with molecule accessible nanopores. With specific sensing-groups modified, the porous-layered nanostructure can be constructed onto resonant microcant...
متن کاملNanoparticle Superlattices: The Roles of Soft Ligands
Nanoparticle superlattices are periodic arrays of nanoscale inorganic building blocks including metal nanoparticles, quantum dots and magnetic nanoparticles. Such assemblies can exhibit exciting new collective properties different from those of individual nanoparticle or corresponding bulk materials. However, fabrication of nanoparticle superlattices is nontrivial because nanoparticles are noto...
متن کاملSelf-assembled broadband plasmonic nanoparticle arrays for sensing applications
Highly ordered noble metal nanoparticle (NP) arrays are produced using a glancing angle deposition on stepped substrates. The versatility of the technique is demonstrated by depositing different metals, resulting in shifts of the resonance positions. The behaviour of the NP arrays grown is predicted by a dipolar model, and it is measured using reflectance anisotropy spectroscopy (RAS). Fine tun...
متن کاملMelting of two-dimensional adatom superlattices stabilized by long-range electronic interactions.
The melting transition of Ce adatom superlattices stabilized by long-range substrate-mediated electronic interactions on Cu(111) and Ag(111) noble metal surfaces has been investigated by low-temperature scanning tunneling microscopy, density functional theory calculations, and kinetic Monte Carlo simulations. Intriguingly, owing to the interaction between Ce adatoms and substrate, these superla...
متن کاملRoutes to Nanoparticle-Polymer Superlattices
Nanoparticles can self-assemble into highly ordered twoand three-dimensional superlattices. For many practical applications these assemblies need to be integrated into polymeric matrices to provide stability and function. By appropriate co-assembly of nanoparticles and polymers it has become possible to tailor the nanoparticle superlattice structure via the length and stiffness of the polymer c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 43 شماره
صفحات -
تاریخ انتشار 2011